Wednesday, 2 October 2013

Black Hole



 All the information taken is on the basis of the theories made by the individual scientist. After collapse to the neutron star stage, stars with masses less than 2-3 solar masses should remain neutron stars, gradually radiating away their energy, because there is no known mechanism for further combination, and forces between neutrons prevent further collapse. But this neutron force is the last stand, and our best calculations indicate that this repulsion which prevents collapse cannot withstand the gravity force of masses greater than 2 to 3 solar masses. Such neutron stars would collapse toward zero spatial extent - toward a "singularity". Once they collapsed past a certain radius, the "event horizon", then even light could not escape: black hole. Since black holes by their very definition cannot be directly observed, proving their existence is difficult. The indirect evidence for the black hole Cygnus X-1 is a good example of the search for black holes.


                                    
Because a black hole has only a few internal parameters, most of the information about the matter that went into forming the black hole is lost. Regardless of the type of matter which goes into a black hole, it appears that only information concerning the total mass, charge, and angular momentum are conserved. As long as black holes were thought to persist forever this information loss is not that problematic, as the information can be thought of as existing inside the black hole, inaccessible from the outside. However, black holes slowly evaporate by emitting Hawking radiation. This radiation does not appear to carry any additional information about the matter that formed the black hole, meaning that this information appears to be gone forever. The question whether information is truly lost in black holes (the black hole information paradox) has divided the theoretical physics community. In quantum mechanics, loss of information corresponds to the violation of vital property called unitarily, which has to do with the conservation of probability. It has been argued that loss of unitarily would also imply violation of conservation of energy. Over recent years evidence has been building that indeed information and unitarily are preserved in a full quantum gravitational treatment of the problem.


No comments:

Post a Comment